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THE EFFECT OF RECEIVER BANDWIDTH ON LUNAR 
OCCULTATION OBSERVATIONS-NARROW SYMMETRIC PASSBANDS 

by 
T. Krishnan* 

Goddard Space Flight Center 

INTRODUCTION 

In recent years, str ip brightness distributions across many radio sources, to very high reso- 
lution (, 1 second of arc),  have been obtained from observations of their occultation by the Moon. 
The theory underlying the derivation of the distribution is that first put forward by Scheuer (1962) 
and applies when the received radiation is purely monochromatic. 

The effect of the finite bandwidth of the receiver is important, both from the point of view of 
effective beam-smearing and from considerations of sensitivity. Von Hoerner (1964) has consid- 
ered such effects in detail, as produced by computer simulation. Scheuer (1965) has given the ex- 
pressions for the beam-broadening function B(t ), where ' is the angular dimension in radians, in 
two cases: (1) a gaussian passband (in wavelength) and (2) a double-sideband receiver. (He does 
not give their derivation.) In the first case, he arr ives  at the very unusual result that the effect of 
the reception of an appreciable range of wavelengths is to convolve the profile obtained by Yestorn- 
tioi?, with a near-gaussian B( ) where B( ) is dependent only on ~ i ,  the absolute value of the 
half-power bandwidth in wavelength, and not on the fractional bandwidth. Sutton (1966)+ has briefly 
derived the function l ) (  V )  that is equivalent to B( ' ) in the 'V ' or  Fresnel integral domain ( v 

and shows the result in the gaussian case to 
d2~-) 

be equivalent to Scheuer's (1965). (For D ,  

s ee  Figure 1; i is wavelength.) He also gives 
an expression for b ( v )  B( ) in the case of a 
rectangular passband. 

t The purpose of this note is to derive an 
expression for B(ti)-labelled r ( / i )  in our anal- 
ysis-which is quite general, and to apply it to 
common symmetrical passbands of relatively 
small  fractional width such as those used in 
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OBSERVER 

Figure 1-Geometry of a lunar occultation 
of a distant radio source. 

*NAS-NRC Assoc ia te  with NASA.  
'The sect ion of this  unpublished thes i s  dealing with bandwidth smoothing was  privately communicated by the author. 
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radio astronomy. The general expression can be used to consider the effects of wide or  asym- 
metric (or both) passbands such as those encountered in optical observations. This will be done 
in a later paper. 

M O N O C H R O M A T I C  T H E O R Y  

We shall consider Scheuer's theory (1965) for monochromatic diffraction only briefly. He 
uses x, the distance of a source from the edge of the Moon, as variable; we use 0,  the angular dis- 
tance in radians as observed from the Earth. For the geometry see  Figure 1. 

The diffraction pattern due to a point source on the Earth's surface is the usual Fresnel d i f -  
fraction of a straight edge over regions small  compared to the Moon's shadow, provided that the 
lunar mountains a r e  much smaller than the first  Fresnel zone (conditions normally satisfied in 
Earth- based observations ). 

In general the received power from a point source is proportional to 

n 
- i ( y 2  + z 2 ) ]  d y d z  x complex conjugate . 

For small angles, putting y = bD, z 

expressed as being proportional to 
m, (where D is the earth-moon distance) the power can be 

exp - i (a2 i- @)I d#dY x complex conjugate . II [ nD 

Under the assumption that the Moon is a straight edge (Le. the source is much smaller than the 
moon) the power from a point source 

where 

For a radio source of finite size, the observed power is 

f ( O ,  A) p ( 0 ,  A) * t(f ' ,  A) ( *  denotes convolution) , 
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where t ( 0 ,  A )  is the one-dimensional or s t r ip  distribution across  the source measured in the di- 
rection perpendicular to the Moon's edge. The differentiated occultation curve g ( 0 ,  A ) ,  is the true 
s t r ip  distribution t(  8, A ) ,  convolved with q( 8, A ) ,  where 

i.e., 

By the convolution theorem, 

where 

and 

Note: since we are operating with 0 ,  an angular measure, we use the asymmetric form of the 
reversibility of the Fourier transform: i.e., the transform of f ( x )  is defined by 

F ( s )  = f ( x )  exp ( - i x s )  dx . 

Generally, it follows from the Fourier Integral Theorem that 

r m  
1 

f ( x )  = J F ( s ) e x p ( + i x s ) d s  
- m  
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Restrictions must sometimes be imposed on the generality of this statement, but they do not ar ise  
in this paper. Then 

and 

Now, 

where q ( 0 ,  A )  is given by Equation 1 as 

Following Scheuer's treatment (1962) identically, we can show that 

where 

-1 for s < 0 
+1 for s > 0 . s g n s  - 

Thus Q ( S ,  A) contains all the Fourier components with equal weight, but with different phases, 
Now, from Equation 2, 

1 
Q ( - s 3  t(0, A) = Fourier transform of - * q(0, A) (by the Fourier 

inversion theorem) 

*Schcuer's expression here does  not have a negative sign in the exponent and corresponds to an inversion of sign in the definition of 
sgn s .  This error i s  trivial for the monochromatic theory, even when passbands are involved, but may be important in other c a s e s .  
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The true distribution is recoverable in principle by convolution of the differential of the observed 
curve with b2 q(-0 ,  A). Scheuer (1962) shows that the differentiation can be avoided (in the inter- 
ests of signal- to-noise ratio) and establishes the identity 

! 

t(8,  A) - b2 p" ( - 0 ,  A) * f ( 0 ,  A) (4)* 

The restoring function c ( 0 )  - b2 p" (-8, X) is "badly behaved" but can be made "well-behaved" 
by convolution with a "well-behaved" function such as a gaussian. The "well-behaved" function 
then defines the "effective" beam of observation. 

We obtain c ( B )  from expansions of the Fresnel integrals C ( V )  and S(V) (see Von Hoerner, 1964), 
where v is related to 0 and h by the expression 

and D is the topocentric distance to the Moon. 

Q U A S I M O N O C H R O M A T I C  T H E O R Y  

At any given wavelength A , 

where M( A )  is the response of the receiver at wavelength A .  Now suppose that the spectral index 
of the source does not change rapidly from strip to strip. Then, as the wavelength changes, the 
intensity in any s t r ip  changes, in the same ratio as in the other strips.  Then 

where ( I' is the spectral variation of the whole source. 

We shall assume that the spectrum of the source is flat over the narrow range of frequencies 
considered. Taking Fourier transforms, we obtain 

~ 

*Scheuer  e r r s  i n  s a y i n g  t(t2, h )  - b'p"  ( - 0 ,  h ) *  f(4, h). 
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(from Equation 3 )  where 

G ( s )  = J G ( s ,  A ) d h  . 
passband 

Multiplying and dividing Equation 5 by Q ( s ,  A, ) at some reference frequency A,, we obtain 

Hence 

where 

and 

Now, following Scheuerls method, we can state from Equation 4 that 

(9 1 t ( 0 ,  h O )  * r(e) = - b'p'' ( - 0 ,  X o )  * F(0) * r (0)  , 

where f ( e )  is the observed curve. If r ( 0 )  is "well-behaved" it can be considered to be the "effec- 
tive beam" caused by finite bandwidth. 

i' 

EVALUATION OF r[e) 

The following treatment is restricted to passband shapes in common use, namely those 
that 

(a) are symmetric in wavelength about a central wavelength, 
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(b) have h/h,  - 1 over the range of wavelengths received. 

Then, putting 4 = A -A,, where X, is the central wavelength, we obtain from Equation 8: 

noting that within these restrictions the effect of bandwidth on the resultant beam depends only on 
4 and not on the fractional bandwidth, 

In general, receiver passbands a re  described in te rms  of frequency response. However, w e  
may assume that for the passbands we consider, conditions (a) and (b) lead to identical expressions 
when stated in wavelengths, at least  up to fractional bandwidths of about 20 percent. 

Gaussian Passbands 

We use the probability ordinate definition of a Gaussian, i.e. 

ril( e )  
(J fi 

which has an a rea  of unity and half-power bandwidth (8'1 n2)'I2 L T ~  . Then 

Let us put 
\ 

Then 
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(We have here changed the variable s o  that the passband is described by a gaussian of unit area 
and unit central ordinate.) Then 

Substituting for i-i and putting the half-width in wavelength 

we have 

Rg ( s )  exp [- (A”.,/D)’ ~ $ 5 6 7 7 ~  In  2 3  

Thus the effective beam 

1 
r g  ((:) T;; -(: Rg ( s )  e i P s  ds . 

Hence 

since R% ( S )  is symmetric and even. This is identical to the solution obtained by Scheuer (1965), b 

except that there is a misprint; for the coefficient of the exponent he hak 

r 
[I- (A4gb)~56772 I n  21 . 

We may write, as Scheuer (1965) does 

r g  ( 0 )  = $ J exp [ - / js4] cos ( s c )  ds , 
0 
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p where 

Then, putting 

t = b1’4 s , d t  = , ~ ‘ ’ ~ d s  , 

? we have 

f11’4 r g  (0)  = rm exp ( - t4 )  cos t p d t  ( ” )  J O  

and the integral can be computed for various 
values of #:,,‘,.1’4 as shown by Scheuer (1965). 

For the sake of uniformity with equivalent 
expressions for other bandshapes, we put in- 
stead y g  - i \ e g / 8 T i  D , an expression that occurs 
for all t h e  passbands considered. Then 
putting 

Y g l / Z S  , 

d Y y  ds  , 

we have 

exp (-0.77520,)~ cos ( fl. - 

This integral was computed for the limits 0 to 
10.0 of W ,  taking values of w at intervals of 
10.0/64.0 for O / ~ p 1 ” ~  in steps of 0.1 and is 
shown by the crosses  in Figure 2. The integral 
converges quite rapidly and yields an exact 

1 .c 
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Figure 2-Relative intensity versus 
B / y : / 2  for gaussian passband. 
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value for 

exp (-0.77 5 2 d  ) dw c 
at O/rp1/2 = 0 as obtained analytically. Figure 2, and Figures 4-7 (discussed later on), show 
71'2 r ( 8 )  plotted against O / Y " ' ~  , for all five passbands considered. Both the actual curves (marked 
by crosses) and the responses normalized to unity at O/Y ' /*  = 0 (full lines) are shown. 0 is in ra- 
dians, and y = (A~?/~TD)''~ where At and D a r e  in meters. 4 

The same limits of integration (0 to 10.0) were taken in the next two passbands considered, 
both of which represent similar continuous functions. 

Now, we find from the curve that Y : , ' ~  r ( n )  is a near-gaussian, of full-width at half-maximum 
given by O/Y:'~ = 2 X 1.4923. This corresponds to an effective full-beamwidth at half-maximum 
(FWHM) : 

radians, where h and D are in meters. For the mean Moon-Earth distance of 3.794 x l o 8  m ,  

An 6 . 2 3  & a r c  sec  

If the actual distance is kD , 

3Qg 6 . 2 3  i 'xg, /k a r c  src . 

This relationship has been tested on a computer. The Fresnel integral response p ( v )  for a 
point source was evaluated at numerous points along a gaussian passband (width .Vle/io = 0.10) with 
appropriate weighting and re-normalized and is illustrated in Figure 3 (a) showing that the fringes 
are smeared out for large v .  The curve was then "restored" by direct convolution with -p" ( -v, X o )  

as shown in Figure 3(b), to give the s t r ip  brightness distribution, r ( v ) .  By dealing with the theory 
throughout in v and A, i t  can be shown that the half-width of the equivalent function r ( v )  (Sutton 1966) 
should be given by 

.ItP 
0 . 8 3 g  a r c  sec (- 0 . 2 6 3 ~ .  f o r  h, 

Figure 3(c) shows the power response r g  (v) (unnormalized) versus V. Within the accuracy 
with which the curve can be read, it has a half-width, close to the above value, confirming our an- 
alytical result. 

10 
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Figure 3(a)-Computed power response, versus v, of  a 
point source due to a gaussian passband of fractional 
bandwidth 10 percent. 

It has become customary in frestoringf s t r ip  
distributions to convolve -b2  p" ( -0 ,  X, ) with a 
gaussian in f ( , i ,  b o  ) (Von Hoerner, 1964), in 
order to make the f "  [ bZ p ( - / ' ,  ) ]  , which is 
rapidly divergent a "well-behaved" one. From 
our  resu l t  it is clear that a passband shape 
which is "well-behaved" and smooth (such as a 
gaussian) already performs this function auto- 
matically, by convolution with r (  ')). Smoothing 
by a further gaussian, say [ ( ' I ) ,  is quite un- 
necessary; when this is done, it leads to an ef- 
fective beam which has the half-width of the 
function 

+40.0 

+20.0 

v 0.0 

I -20.0 

- 
a 

-40.0 

' 1  

I I I I I I 

-4.0 -2.0 0.0 +2.0 +4.0 +6.0 +8.0 +10.0 

V 

Figure 3(b)-"Restoring function" for power response of 
Figure 3(a), plotted wi th  sign o f  v reversed. 

I I 

I I I I I I I 

-2.0 -1.5 -1.0 -0.5 0.0 +0.5 +1.0 +1.5 
V 

Figure 3(c)-"Restored distribution 'I. 

Single-Tuned Passbands 

For the purposes of this analysis, we define the passband as 

As in the previous case this function has an area of unity. However, its half-power bandwidth 
\.CS 2oS. Then 
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(where, as before p - s 2 / 4 7 i ~ .  sgn S )  

Putting m = t / (ms ) ,  we obtain 

Substituting for i~ and putting o s  = !'ds/2, we have 

The effective beam is given by 

i.e., 

This expression for r s  (0) represents the inverse Fourier transform of a gaussian; this is also a 
gaussian and is easily determined: L; 

r m  

exp (- y ,  s 2 )  cos ( s t ) )  cis 
- m  
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c--- 
i 
'\ 

Thus 

which has a full width at half-maximum of 

' s  

For purposes of testing the computational pro- 
gram O / Y : / ~  w a s  obtained from an integration 
identical to that performed for the gaussian 
passband and yielded 

'9 
1,2 - 3.3308 . - -  

y s 

The FWHM in this case is given by 

where A t s  is in meters. The computed curve 
is plotted in Figure 4 as well as its normal- 
ized version. 

0.7 

0.6 

I I I I I ~-r 

-O-l t I I I I L 
1.0 2.0 3.0 4.0 5.0 6.0 7.0 

e p ?  

Figure 4-Relative intensity versus 0 / y 1 / *  for 
. single-tuned passband. 

The "effective beam" due to bandwidth is s o  "well-behaved" that there is no reason why re s -  
toration with - b2 P" ( -  ,'. X o  ) should not again be attempted directly. In both the gaussian and the 
single-tuned cases, the lengths of the restoring function and the observed records should be adequate. 
Sutton (1966) has shown that a restoring function extending to - z units of v w i l l  enable a narrowest 
beam 1.2/z units of v in width to be obtained. 

Negative-Exponential  Passbands 

Though this is not a passband in common use, it is instructive to calculate its effect on beam 
width and shape. 

Let the passband be expressed as 

13 



Its area is unity and it has a full bandwidth at half-maximum de = 21n2 ue . Then 

Proceeding as before and putting &/me = m, we obtain 

Now 

s 4  (*%J2 .’.,‘ = ~ 16n2 D2 . - ( 21n2)2 

= [ y y  s (1 .2011)]4  . 

Hence 

1 
R e  ( s )  - 1 + ( 1 . 2 0 1 1 y p  4 4  . 

- 

Then, as in the Gaussian case, putting w = s ,  we have 

B 
cos a- 

1 = g JOm ___~ Yd’2 r e  (4 1 .t ( 1 . 2 0 1 1 w ) 4  ( y b / 2 )  dm ’ 
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Figure 5 shows the actual and normalized 
curves of this integral. Function { r,' I 2  r e  ( 0 ) )  

is a near-gaussian closely resembling { r i  /' 
x r g  (0 ) ) in  shape. The FWHM of r e  ( 0 )  , 
however, is broader and is 2 x 1.7024 units of 
(3/y: I 2  . This corresponds to a FWHM of r e  (8) 

given by 

where, again, A t e  is in  meters. 

Rectangular Passband 

The rectangularpassband differs in char- 
acter from those we have considered insofar 
that it has sharp discontinuities. Care must 
therefore be taken in the numerical inverse 
Fourier transformation of R (  s ) .  The rectan- 
gular passband is defined as 

A({) = + I1 ($) 

1 .o 

0.9 

0.8 

0.7 

0.6 

2 0.5 

Z 
c 
- 

0.4 2 
4 
c 

9 0.3 

0.2 

0.1 

0.0 

-0.1 
I I I I I I I 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 

O / Y ; l 2  

Figure 5-Relative intensity versus 0 / ~ ' / ~  for 
negative-exponential passband. 

whose area is unity and whose full-bandwidth-at-half-maximum AXr  - o r .  For most practical pur- 
poses it is unnecessary to dwell on the behavior of the function at .0,/crr = * 1/2, and this neglect is 
implicit in our treatment. Then 

1 /2  

c o s ( v r m ) d m  
= I,,, 
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8nD AX 
AX s2 

R r  ( s )  = - s i n  (siifj 5 2 )  

s i n  (yr  s 2 ) c o s  ( s 8 ) d s  . 
Y, s 2  

Putting, as before, 

we have 

1 .o 
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0.7 

0.6 

v, 0.5 
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t 
Ly 

4 
w w 

W 

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 

O / Y ?  

Figure 6-Relative intensity versus 8/y1" for 
rectangular passband. 

Problems arise in the numerical computation 
of this integral. We have taken the limits of 
integration as w = 0 and w - 6. The upper 
limit of 6 is chosen so as to evaluate the 
integral accurately without "aliasing," given 
the requirements of adequate sampling of the 
function s i n  

the function terminate at zero at the truncation 
point. The curve that is shown as ): r r  ( 0 )  

in Figure 6, is in fact 

This upper limit also makes 

and represents 

The convolving sinc function falls to its f i rs t  
zero at = 0.6, while the full-width at 
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111 It 
5 

$ 
i 
d 

half-maximum of the resulting curve is of the order of 3.0 in units of O/Y:/~ . We therefore ex- 
pect the truncation to have negligible effect on the derived beam. 

The curve, as would be expected, has large sidelobes. It has a FWHM of B / Y : / ~  = 2 x 1.4895, 
yielding a value for the angular FWHM of 

ne, = 6 . 2 9 i m a 1 - c  sec  

where AXr is in meters.  

In order to reduce the sidelobes, the observed curve would have to be restored by the smooth- 
ing of - b2 P” ( -  B ,  A,) with a well-behaved function such as a gaussian, further reducing the angular 
resolution. 

Triangular Passband 

We next consider a triangular passband defined by 

where 

The triangular passband is closely related to the rectangular passband; it results from the 
convolution of the rectangle function with itself. Hence, we may write 

1 1 

7 . A (g) 7 I 1  (G) * I1  (e) . 
Function A( e )  has area unity and a full bandwidth at half-maximum AXT = cT. 

It follows directly from the convolution theorem that 

R T ( s )  = R R ( s )  . R R ( s )  

(substituting, however, gT for D~ ), 
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Figure 7-Relative intensity versus 6 ’ / ~ ’ ’ ~  for 
triangular passband. 

where P = AXT/8nD, and 

I’ 1 1 
rT(B) = [y,. s i n y T s 2  c o s ( s 0 ) d s  

Making the usual substitution, w = y ; / 2  S ,  we 
have 

Integrating for w = 0 to =(the effects of 
truncation a r e  thus the same as in the rectan- 
gular case) we obtain the curves shown in 
Figure 7. 

The FWHM corresponds to a value of 
= 2 x 1.48, and the full-width to half- 

maximum of the effective beam is given by 

The curve has smaller sidelobes than the rectangular passband. 

SENSITIVITY 

The limiting sensitivity of a radio-astronomy receiver with a square-law detector in responding 
to a noise-signal is s e t  by the power response, in frequency, of the reception filter &( f )  and the 
smoothinglow-pass outputfilter s( f ) .  As derived by Bracewell (1965, pp. 337-339), 

rms f l u c t u a t i o n  - 1 
mean 

where 

3, = 1 /2  . Wixi ( x d e n o t i n g  c o r r e l a t i o n )  

T = l/we, wAX; is the auto-correlation width of r;l( f ) ,  including the negative frequency part  of the 
response, and ws is the equivalent width of the power-transfer function of the smoothing filter. 
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Without considering details of the smoothing filter, we can say that, given a particular smooth- 
ing filter, 

rms f l u c t u a t i o n  1 

mean a [ (1 /2)  w;x;n]l’* ’ 

The passbands we have considered are all narrow and symmetrical in wavelength. They were 
made sufficiently narrow ( <  20 percent) to make A h o  in Equation 8 equal to 1. In such cases the 
passband expressed in wavelength is identical in form with the passband expressed in frequency. 
This is true when f ‘v f fo2 .  It may be that this identity does not hold at high fractional widths 
(> 20 percent), the symmetry of the bandpass in frequency being impaired. However, the equivalent 
width of the frequency passband as well as its autocorrelation function would even then be very 
nearly proportional to the corresponding expressions of the wavelength passband, and we can say 
that 

rms f l u c t u a t i o n  1 
mean 

where Wc,,, is the equivalent width of A( X) x ,(-e). Since A( 4 )  in all the cases we have considered 
is even, the autocorrelation is equivalent to self-convolution, and / ?  ‘x (1 /2  W,P;*;)~’? The larger 
[ ( I n )  w ? ~ * ~ ] ~ ’ ~  is, the greater is the sensitivity. 

Table 1 presents the results for the five passbands considered (for k = 1). We find that the 
beams obtained all have widths lying between 6.2 and 7.2 times I‘/i.o. seconds of arc ,  where A4 is 
expressed in meters,  but have different shapes. 

Thus from the point of view of resolution, it is the half-width to full maximum of the passband 
that determines the resolution in angle. 

However, 1/[(1/2) wtA*;]l ’2 , which is a measure of the sensitivity, is differingly dependent 
on the shape of the passband. Thus, i f  A4 is equalized for all the passbands (defining a specified 
half-power beam-width due to broadening), the single-tuned passband seems to offer the best sen- 
sitivity; also, it leads to a gaussian beam with low sidelobes. At first this result is surprising, 
but not when w e  consider how finite passbands affect the diffraction pattern. All the other pass- 
bands considered have more weighting for the responses at wavelengths away from the central 
wavelength than the single-turned passband, which is narrow in the central par t  of its power- 
response but has a broad, low amplitude response in the outer parts. It is interesting to note that 
the rectangular passband is the most undesirable from all points of view-width, shape, and 
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Table 1 

Summarized Data for Five Passbands. 

- 1 exp (- 1~ I) 
5 e  1 0 

Halfwidth 
A 8  

2”s 

21n 2oe 

5 r 

0 

Beamwidth 

(arc sec) 
ne 

6.23& 

7 . 0 3 6  

7.1 8 iAte 

6.29 6 
6.25flT 

1/2 wz, * ; 

1.5053 Atg 

3.1416 Ats 

2.8854 A t e  

1.0000 Atr 

1.5000 At, 

1/2 wi;*; 

1.5344 AZg’ 

2.51 5 0 A&: 

2.2144 At: 

1.00 0 0 At r’ 

1.51 93 Ax; 

n 

1.24 

1.59 

1.49 

1.00 

1.23 

sensitivity. As noted earlier,  it leads to a beam of about the same width as that due to a gaussian, 
but still needs further smoothing without any gain in sensitivity. 

The relative sensitivity can be normalized, relating all widths to that of the rectangular pass- 
band. The value of A4 for any passband can be changed to a new value &’ , so  that its beamwidth 
is given by 6.29 a r c  sec. The resulting measures 1/2 W i A * ;  a r e  shown in the table as well as 
the ratio 

which is a direct measure of the sensitivity in relation to that of the rectangular passband. 

Though the output time constant is ignored in this treatment, it can be stated that it must be 
r 5 2.0 Af? sec, where A 0  is the beamwidth in radians, this value being appropriate for a central 
occultation. 

CONCLUSIONS 

For passbands symmetrical in wavelength whose fractional bandwidth is less  than 20 percent: 

1. The resultant ‘leffective beam” depends only on m, where A8 is the half-power bandwidth. 
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2. This result leads to an increase in attainable sensitivity at shorter wavelengths (or higher 
frequencies). 

3. Of the passbands considered, the single-tuned circuit gives maximum sensitivity for a 
given angular resolution, while all the others except the rectangle are almost as suitable 
in other respects. 

4. "Restoration" of observations can be undertaken by direct  convolution with - b2 p" (- 6, A o )  

of appropriate length, in  all cases except the rectangle, without further smoothing. 

No comparison is made here with Von Hoerner (1964) for the sensitivity and resolution due to 
a gaussian and rectangular passband, as his expressions do not lend themselves to easy comparison. 

Goddard Space Flight Center 
National Aeronautics and Space Administration 

Greenbelt, 5laryland. October 1367 
877- 10-04-01-5 1 
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